skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baer, Kathryn C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fine‐scale spatial climate variation fosters biodiversity and buffers it from climate change, but ecological studies are constrained by the limited accessibility of relevant fine‐scale climate data. In this paper we introduce a novel form of species distribution model that uses species occurrences to predict high‐resolution climate variation. This new category of ‘bioclimate' data, representing micro‐scale climate as experienced by one or more species of interest, is a useful complement to microclimate data from existing approaches. The modeling method, called BISHOP for ‘bioclimate inference from species' high‐resolution occurrence patterns,' uses data on species occurrences, coarse‐scale climate, and fine‐scale physiography (e.g. terrain, soil, vegetation) to triangulate fine‐scale bioclimate patterns. It works by pairing a climate‐downscaling function predicting a latent bioclimate variable, with a niche function predicting species occurrences from bioclimate. BISHOP infers how physiography affects bioclimate, estimates how these effects vary geographically, and produces high‐resolution (10 m) maps of bioclimate over large regions. It also predicts species distributions. After introducing this approach, we apply it in an empirical study focused on topography and trees. Using data on 216 North American tree species, we document the biogeographic patterns that enable BISHOP, estimate how four terrain variables (northness, eastness, windward exposure, and elevational position) each influence three climate variables, and use these results to produce downscaled maps of tree‐specific bioclimate. Model validation demonstrates that inferred bioclimate outperforms macroclimate in predicting distributions of separate species not used during inference, confirming its ecological relevance. Our results show that nearby bioclimates can differ by 5°C in temperature and twofold in moisture, with equator‐facing, east‐facing, windward‐facing, and locally elevated sites exhibiting hotter, drier bioclimates on average. But these effects vary greatly across climate zones, revealing that topographically similar landscapes can differ strongly in their bioclimate variation. These results have important implications for micrometeorology, biodiversity, and climate resilience. 
    more » « less
  2. Climate change is driving widespread changes in ecological communities. Warming temperatures often shift community composition toward more heat-tolerant taxa. The factors influencing the rate of this “thermophilization” process remain unclear. Using 10-y census data from an extensive forest plot network, we show that mature tree communities of the western United States have undergone thermophilization. The mean magnitude of climate warming over the 10-y study interval was 0.32 °C, whereas the mean magnitude of thermophilization was 0.039 °C. Differential tree mortality was the strongest demographic driver of thermophilization, rather than growth or recruitment. Thermophilization rates are associated with recent changes in temperature and hydrologic variables, as well as topography and disturbance, with insect damage showing the strongest standardized effect on thermophilization rates. On average, thermophilization occurred more rapidly on cool, north-facing hillslopes. Our results demonstrate that warming temperatures are outpacing the composition of western US forest tree communities, and that climate change may erode biodiversity patterns structured by topographic variation. 
    more » « less